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Abstract—Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended
environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve
the required safety levels the perception system needs to be certified, but no specific standards exist for computer vision systems, and
the concept of safe vision systems remains largely unexplored. In this paper we present a novel domain-specific language that allows
the programmer to express image quality detection rules for enforcing safety constraints. The language allows developers to increase
trustworthiness in the robot perception system, which we argue would increase compliance with safety standards. We demonstrate
the usage of the language to improve reliability in a perception pipeline and evaluate it against manually written rules on embedded
hardware. The language allows the vision expert to concisely express the safety-related constraints and thereby bridging the gap
between domain experts and certification authorities.

Index Terms—DSL, readability, safety, functional safety, computer vision

1 INTRODUCTION

M OBILE robots are used across many domains from
personal care to agriculture. For domains such as agri-

culture where heavy machinery is used extensively, robots can
improve performance and efficiency while increasing safety,
which is critical even for developed countries [1]. Despite
the increased development of mobile robots, designing robots
remains a difficult task, in part due to the many overlapping
domains. We are interested in the field robotics subdomain of
mobile robots, which concerns machinery applied for outdoor
tasks, e.g., in construction, forestry and agriculture [2], [3].
The development of field robots is particular demanding,
because the robots operate in an open-ended dynamical envi-
ronment [4], which introduces additional strain on the robots,
and as result outdoor mobile robots fail up to 10 times more
often than other types of robots [5].

The reliability issue for robotics has been discussed in
terms of systematic software framework design to improve
quality [6]. We however observe that the same issue of
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reliability has already been addressed in more mature domains,
such as the avionics and automotive domains, for example
using Model-Driven Engineering (MDE; [7]). MDE is sim-
ilarly being used in robotics to improve development time
and reliability [8], [9]. These MDE approaches are however
not developed with a functional safety focus and are missing
some key aspects to make the robots trustworthy in relation
to certification and consumers.

Safety certification is a method for achieving industry-
required levels of reliability and dependability, while address-
ing liability (see [10]). Compliance with safety standards is
considered key to ensuring reliability by achieving an appro-
priate level of functional safety [11]. We therefore believe
that MDE is an important method for achieving compliance.
In order to ensure safe autonomous operation, robust and
reliable risk detection and obstacle avoidance must be per-
formed. In this regard, field robots are highly dependent on
perception sensors and algorithms to understand and react to
the environment. The robot has to observe a large area; it
must be fast, reliable and robust; it is constrained to function
with low computational resources due to embedded hardware;
and it might have lower priority than control; and must
be predictable [12]. This imposes severe constraints on the
software that interacts with sensors.

We propose to use a Domain Specific Language (DSL) for
safety concerns in perception systems. We see code generation
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as an improvement to reliability and the possibility of lowering
the demands for achieving certification, as is done by Ben-
salem et al. [13]. Our current research question is to investigate
the applicability of safety rules for perception systems, based
on code generation from a DSL. Concretely our goal is to
investigate if it is possible to create rules for sensory systems,
as has been done with control [14]. Existing MDE methods
describe safety issues, however these issues are not addressed
according to any standards [3]. Instead focus has been on
quality; standards within software for field robots are only
used to a very limited extent and not existing within computer
vision [3].

Paper Outline: First, Section 2 outlines background and
related work on safety, computer vision, and MDE, using the
related domain of automotive as a concrete case, followed by
Section 3 which presents the main contribution our DSL. The
syntax and semantics is presented along with the current state
of implementation. We then evaluate the DSL quantitatively
and qualitatively, leading to an overall discussion of the use
of the DSL. Last, Section 7 concludes and describes future
work.

Previous Work: This is an extended version of a paper
originally published at IEEE IRC [15]. Compared to the
original version, we have expanded related work with more
detail; the description of the language has been extended, by
more in-depth information along with syntax and semantics;
and we have evaluated new concepts and benchmarked verified
computer vision rules on embedded hardware, along with a
qualitative analysis of the language.

2 BACKGROUND

This section introduces standards and functional safety in the
agricultural domain, leading to safety in computer vision and
the connection to the automotive domain, ending with an
overview of MDE methods.

2.1 Functional Safety
Safety as defined by the International Organization for Stan-
dardization (ISO) is the ability to mitigate identified risks,
i.e. detected hazards resulting in harm, where risk is the
“combination of the probability of occurrence of harm and
the severity of that harm” [16] and harm is defined as “injury
or damage to the health of people, or damage to property or
the environment” [16]. We deal with safety in this sense, which
can be summed up by the definition by Avižienis et al., namely
the absence of catastrophic consequences [17]. Functional
safety is a means for guaranteeing reliability towards specific
errors in the entire system (hardware components, hardware
design, and software) or as a guaranteed reaction, i.e., reaching
a safe state. To comply with functional safety is a matter
of conducting a Hazard and Risk Analysis (HRA), where
hazards are errors or failures within the system components
where a malfunction will result in a dangerous situation. These

functions are called safety-related functions. A safety-related
function could be detecting obstacles, where a hazard is that
the image is overexposed, resulting in missed detections. The
HRA then imposes requirements on the entire development
process, through the formulation of safety goals. A safety
goal, in this case, would ensure that the image exposure is
usable for the algorithms. The HRA can result in multiple
safety goals, where each goal will result in the development
of safety function(s), that ensure or monitor that the safety
goal will not be violated [18]. Functional safety focuses on
mitigating unacceptable risks, by removing them or ensuring
that the system can return to a safe state. The standards,
therefore, do not care about nominal performance. Meaning
during certification nominal performance is not assessed with
respect to functional safety standards. This, however, does not
mean that nominal performance is not critical for the system
as a whole and therefore should be guaranteed through testing,
but should be seen with respect to performance standards or
internal quality requirements instead of functional safety.

The mobile robotic domain is only sparsely covered by
standards. One standard that comes close is ISO 13482 for
personal care robots [19]. This standard has type descriptions
for robots where one is categorised as outdoors. The standard
impose requirements for the HRA, but relies on other standards
for the development requirements. Standards like ISO 13482
have an overview of hazards which needs to be addressed
for mobile robots; an extension to this based on the material
for ISO 13482 can be found in Dogramdzi et al. [20], which
includes descriptions of how to create the HRA for a robot
system. Because we are focussing on the sub-domain of
field robots we believe that the agricultural functional safety
standard (ISO 25119 [21]) should be used for the development.
To improve the safety of field robots in general, we believe
it is important to give researchers an easy way of integrating
these standards into development [3].

Functional safety standards only address human dangers,
e.g., ISO 26262 [22] and ISO 25119 [21]. This leaves the
designer and developer to categorise issues related to harming
the robot, e.g., untraversable ground and non-human obstacles.
Hedenberg et al. [23] use EN 1525 (driver-less trucks [24]),
and argue to also take into account damages occurring by
colliding with an object that indirectly harms people, as well
as if material damages resulting from a crash if they are high.
That is however much broader than the international standards,
nevertheless the same issue exists in European law: loss can be
both economic and non-economic; it includes loss of income
or profit, burdens incurred and a reduction in the value of
property; and also physical pain and suffering and impairment
of the quality of life [10]. Overall this means that safety
should be addressed for the entire operation of the robot. The
safety issue is partially at odds to how autonomy is developed
today. Researchers rely on machine learning and Artificial
Intelligence (AI) to achieve required performance and safety.
The issue however is that for a robot to be perceived safe
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its behaviour should be understandable for humans to allow
for certification. This tension is described in “Defense Science
Board 2016 Summer Study on Autonomy” which argues that it
is hard for humans to understand and predict AI systems [25].

2.2 Safety and Computer Vision

In practice autonomy needs to rely on perception to allow
the robot to operate in a dynamic environment, making the
vision domain critical for the safety of the robot. This is
also seen in the automotive domain, since if “applications are
based on unreliable data [this] causes them to be unreliable
as well” [26]. For the automotive domain the challenges of
limited hardware resources, low energy consumption, high re-
liability and robustness and, adverse environmental conditions,
must all be addressed to enable computer vision and advanced
software to be applicable in real-world scenarios [27]; we
expect that this will also be the case for field robots. We
therefore look at the robotic domain but utilise information
from the automotive industry for concerns and hazards in
Section 2.2.1. We use the automotive domain for experience as
we look at possible failures when investigating autonomy for
cars in Section 2.2.2, because similar failures could be present
in robots.

2.2.1 Field Robotics and Automotive Industry
To achieve safety, field robots need to be dependable, which
imposes high requirements on the reliability of the software,
data and the vision pipeline. Despite the need for safe and
dependable computer vision systems, the domain is solution-
driven [3]. There do exist probabilistic measures for failure
detection [28], [29], the issue with these methods is however
that it is difficult to prove that the underlying distributions
cover the entire normal behaviour, as illustrated by the spuri-
ous behaviour learning methods can exhibit where the neural
network wrongly makes different classifications of images
indistinguishable for humans [30]. A key problem is that
classifiers and learning are complex tasks that are hard to prove
reliable for humans, in particular through code reviews, which
is an often-used procedure during safety certification.

Functional safety standards such as ISO 25119 for agricul-
ture [21] and ISO 13482 for personal care robots [19], are
important for the overall functional safety of the robot and for
the design of its subsystems. The IEC 61496 [31] standard
covers the use of vision in an industrial setting and could
thus be used for field robots, as could upcoming standards
for performance of vision systems [32], [33]. These standards
cover the design of hardware as well as software, which
makes it cumbersome to get complex systems and algorithms
certified. There are many requirements to a computer vision
system: it has to be able to observe a large area; it must be
fast, reliable and robust; and it is constrained to function with
low computing resources because it normally has to run on
embedded hardware. These requirements are on a functional

level. Therefore, when aiming for certification, requirements
could be inspired by the advances in the automotive domain.
As an example, the automotive domain for camera mirrors
demands response times of less than 70ms in order to fulfil
automotive requirements [34]. As part of the development
of the camera mirrors an HRA was performed, where the
following hazards were found [34]:

• No image (display completely dark);
• Image does not clearly display scenery according to

specification (e.g., adaptation to varying light conditions
fails, leading to an overly dark or bright image);

• Frozen image (formerly correct image appears continu-
ously as still image);

• Delayed image w.r.t. reality (more than specification
allows);

• Wrong field of view;
• Wrong or unexpected zoom factor (e.g., wide-angle zoom

factor for parking mode displayed on highway, making
objects appear further away than they actually are);

• Artefacts on display (e.g., double or phantom objects,
light spots, dark areas).

Similar challenges are found within robotics, where a mul-
titude of sensors are used like encoders, gyros, sonars and
cameras. These sensors can exhibit faults such as sensor
bias, locked in place or loss of calibration [35]. This shows
that a multitude of issues can occur in the sensor data.
Addressing these issues along with developing the solution-
oriented algorithm is cumbersome for developers. All these
issues are due to the adverse environment where cars and
robots have to operate. In the concrete case of mirrors they
need to be tested in a multitude of environments [7]. Adapting
the environment for off-road test conditions to fit field robots,
the hazards become: low sun; uneven surfaces; rain; night
drive; and snow.

We use the above challenges from the camera mirror system
as inspiration for hazards for robotics domain. The experience
from the automotive domain in using functional safety for
advanced systems is critical for establishing examples and
requirements for the robotic systems. From the automotive
domain it is possible to get an overview of the hazards and
the test environments where a computer vision system should
be validated. In addition to hazard identification and testing in
different environments, the computer vision system also has to
address performance for detecting obstacles. Obstacles should
be understood in a broad definition in which untraversable
ground also is categorised as an obstacle (which is even a
problem for human operated tractors today [36]), as well
as obstacles like humans, animals and trees as examples.
Because of safety concerns relating to autonomous robots,
it is important to address these issues with compliance to
functional safety standards. Standards within software for field
robots are used to a very limited extent and are non-existing
within computer vision [3]. The lack of standards for field
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robots is a paradox since autonomous mobile robots rely on
robust sensing to react, without robustness the robot may
“hallucinate” and respond inappropriately [37]. This issue puts
constraints not only on the software but also on the hardware.
As an example a RAW image has different degrees of being
“RAW” [38]. This difference in RAW can be seen in different
A/D converters, gains, and hardware image optimizations.
Because of this wide range input, changes in hardware can
be problematic.

It is therefore important to comply with functional safety to
enable safety verification of the vision pipeline, and to give
assurance about the hardware, as well as verifying inputs and
outputs for the robotic domain.

Other approaches of designing the software for analysis of
perception systems exists [39], but the goal of this high-level
system is to tackle the analysis of the image with respect to
events, where our approach is based on low-level analysis.
The low-level analysis aims to ensure that the data is correct
and can be used, and thereby reason about the data. The use
of a DSL allows the developer to quickly create code within
existing pipelines for verifying the process.

We note that neural networks have received significant
attention in the computer vision community, beating other
methods in performance on many tasks. Nevertheless, safety
certification of neural networks remains an open issue [40].
Artificial Neural Networks (ANNs) should ideally be un-
derstandable and readable by humans, while still allowing
for individual, meaningful rules [40]. Gupta et al. propose
verification and validation of adaptive ANNs [41], although
with a focus on control systems. We hypothesise the use of
explicit and simple low-level safety rules as a means to be
compliant with standards and would enable the safe use of
higher-level more complex vision systems for performance.

2.2.2 Software Failure in the Automotive Domain
The automotive domain is focused on functional safety to
achieve safety and compliance. However the increased interest
in assisted and autonomous functionality for cars exerts pres-
sure on current methods of achieving compliance. Currently
the main method for increasing autonomy in cars is to have
the driver be the fallback safety in malfunctioning scenarios.
This is described as a level 3 autonomy [42]. The current
methods for achieving this level is to move the responsibility
to the driver, e.g., for Tesla: “Autosteer is intended for use only
on highways and limited-access roads with a fully attentive
driver. When using Autosteer, hold the steering wheel and be
mindful of road conditions and surrounding traffic. ... Always
be prepared to take immediate action. Failure to follow these
instructions could cause serious property damage, injury or
death” [43], where the critical point here is the need of a
fully attentive driver. This implementation of level 3 autonomy
has unfortunately led to a death in a Tesla car crash, which
has been investigated by the National Highway Traffic Safety
Administration (NHTSA; [43]). The increased autonomy and

the environmental perception imposes issues on how safety
functions should be implemented. This issue is evident in the
crash investigations by NHTSA: “Both the radar and camera
sub-systems are designed for front-to-rear collision prediction
mitigation or avoidance. The system requires agreement from
both sensor systems to initiate automatic braking.” [43].
Specifically “Object classification algorithms in the Tesla and
peer vehicles with Autonomous Emergency Braking (AEB)
technologies are designed to avoid false positive brake ac-
tivations. The Florida crash involved a target image (side
of a tractor trailer) that would not be a “true” target in
the EyeQ3 vision system dataset and the tractor trailer was
not moving in the same longitudinal direction as the Tesla,
which is the vehicle kinematic scenario the radar system is
designed to detect.” [43]. This example shows the difficulty
of environmental sensing and that assumptions made at design
time can result in fatalities in production. The statement from
the investigation could be interpreted as showing that Tesla
has been focussed on availability and not safety, because one
knows the uncertainty in the sensors, and for safety the car
should have required the user to take over. This however did
not happen despite it being required by the system for a full
6 minutes before the crash [44].

The current level 3 autonomy is further problematic because
humans will tend to assume that if no faults happen the system
is safe and thus reduce awareness [45]. WAYMO is however
aiming to field fully autonomous cars corresponding to level
5 [42]. Currently WAYMO are at level 4, which means that the
fallback system is a computational system that should be able
to bring the car to a safe state, in this case referring to a mini-
mal risk condition that does not require a fully attentive driver
as Tesla does. To achieve this WAYMO believes that they
have to mix different standards [46], emphasising the issue
of achieving compliance for functional safety in autonomous
systems. Despite WAYMO having achieved Level 4 autonomy,
the operations are strongly restricted to operational design
domains, which “includes geographies, roadway types, speed
range, weather, time of day, and state and local traffic laws and
regulations” [46] showing how difficult it is for autonomous
machines to deal with dynamic environments.

2.3 Model Driven Engineering

MDE allows for more formalised approaches than standard
general purpose programs. Because development is often done
across multiple devices, formalisation is an asset for lowering
the maintenance cost of developing for many devices, by
supporting many different languages or constructs specific to
the device. Using MDE for safety ensures that all the different
programming languages and devices can be addressed using
a single consistent approach. This ensures that rules and code
are more reliable across many different implementations. MDE
in robotics is an area that currently receives significant atten-
tion [47]. Existing research includes control [14], vision [47]



J.T.M. Ingibergsson et al./ Declarative Rule-based Safety for Robotic Perception Systems Journal of Software Engineering for Robotics 21

and general robot model-driven development [8], [48]. One
approach to MDE is to create a DSL [47]. DSLs can be tailored
for the specific domain to allow non-software experts to do
programming tasks [49]. The narrow scope of the DSL is often
claimed as a means of lower learning costs, while still having a
high applicability [50]. Although some MDE methods address
safety issues [9], in general these issues are not compliant with
any safety standards. As an example Bensalem et al. guarantee
safety using code generation; the guarantee is mathematical
but not in compliance with any standard [13]. This approach
is nevertheless one of the few DSLs that explicitly deal with
safety. Nordmann et al. found 137 DSLs within robotics, but
only 8 within safety and security [51]. Instead focus has
been on quality, as with Reichardt et al. who avoid using
code generation to improve transparency [6]. The focus on
quality and the use of DSLs is however a good way to reduce
such issues, because manually written code often is more
prone to errors than well-created DSLs [52]. We see code
generation as an improvement to reliability, and the possibility
of lowering the demands for achieving certification because of
mathematical guarantees.

When aiming for safety certification, it is critical that
mapping between failures, documentation and code is robust
and clear and as a result several attempts exists for extending
well-known MDE environments such as RoboML and SysML
to incorporate Failure Tree Analysis (FTA) [53], [54] and
safety analysis according to IEC 61508 [55]. Other methods
like Hazard Operability also exists, which can be seen, e.g., in
Zendel et al. [56]. We see FTA as a feasible method, since it
is extensively used within more established domains. The FTA
can enable the developer to find causality between issues and
thereby improve the design of safety functions. Developing the
safety functions can however become a large and expensive
task. Because the entire hardware and software, that the safety
function “touches” has to be included in the certification.
Complying with functional safety can be a costly affair both
for certification and development, but code generation can
generate code compliant to guidelines, e.g., MISRA [57], and
improve traceability from textual requirements. Because the
DSL can be defined in a more natural language than General
Purpose Languages (GPL), code thus improving connection to
textual goals. Given the current state of the art, using MDE
within functional safety for the computer vision domain is
thus a novel idea that has the potential to enable researchers
to quickly improve functional safety of robotic systems.

3 SAFETY LANGUAGE FOR IMPROVED SEN-
SOR CERTIFICATION

We believe that the use of explicitly written computer vision
rules supports certification authorities in reviews, and thereby
provides an increased understanding of the systems safety
functions and the functionality. In earlier work we demon-
strated that such rules can be used to detect whether the

output of a vision pipeline applied to a given image can be
trusted [58]. The verified rules were manually implemented,
but demonstrate that we can perform the essential task of de-
tecting “bad” images, which is critical since a vision pipeline
that is fed bad images may produce arbitrary results and
the results produced for such images should therefore not be
trusted. The rules for example analyse histogram distributions,
high frequency content, or if the images are moving. This
paper presents the design and implementation of a DSL for
expressing such rules.

3.1 Domain analysis
Following an MDE approach, we adopt the concepts identified
in the Robot Perception Specification Language [48]. Here
a computer vision pipeline has inputs that are processed by
a number of filters to generate outputs. In this setting, the
question of whether a computer vision pipeline is performing
correctly can be tested in a number of ways. First, the validity
of the input image can be tested, if the input data is invalid
the result of the vision pipeline cannot be trusted (garbage
in, garbage out). Second, the validity of intermediate results
can be tested, for a given intermediate result certain outputs
are expected at a given stage. Last, the validity of the final
result can be tested against other sensors or a ground truth. In
this paper we primarily concentrate on testing the validity of
the input image, but our approach is general in the sense that
intermediate results and the final result can also be tested, as
is also demonstrated by our experiments.

The validity of a vision system should not only be consid-
ered as a simple boolean property (functioning/failing). For ex-
ample, the concept of a warning region within safety systems
for autonomous robots has been introduced by Mekki-Mokhtar
et al. [59], making the system able to categorise three regions
“error” (or equivalently: “bad”), “warning”, and “good”. The
split into different regions facilitates later combination of the
rules, i.e., if a certain combination of rules produces warnings
then the system could also interpret this as an error.

The safety-critical program should target an embedded
execution platform running on a high-reliability embedded
system, since these often are more suitable for safety cer-
tification. The main computer vision pipeline would run on
high-performance hardware and communicate selected parts of
the input, intermediate and output data to the high-reliability
system for validation. The high-reliability system thus only
performs the computation needed to validate that the high-
performance system is functioning correctly.

3.2 ViSaL concepts
The Vision Safety Language (ViSaL) has been designed to
monitor the validity of a computer vision pipeline. The key
elements of the ViSaL metamodel are shown in Figure 1,
most attributes and details such as expressions are omitted for
clarity. A ViSaL program monitors a number of inputs each of
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Fig. 1: ViSaL metamodel (UML, selected details omitted, expressions not included)

which correspond to a stream of data being continuously fed
into or produced by some aspect of the vision pipeline. The
monitoring is performed using rules that express if the data is
valid at a given point in time according to specific concerns.
If the data is invalid a warning or error is signalled for this
specific concern.

Output is used to indicate the rules that check the validity
of the vision pipeline in terms of different Output States.
Variables record the current state of the vision pipeline as
well as a history of these states. The Rules are expressed in
a minimalistic imperative language and output a classification
in terms of output states. The classification result is expressed
using Case statements, in terms of a numerical quantification
of the pipeline data which then can be used for taking decision
about the system.

3.3 ViSaL by example
Figure 2 gives an overview of different capabilities in the
ViSaL DSL. The example shows a subset of the possible rules
in the language, based on the camera mirror hazards, so as to
reflect that ViSaL can be used to express functional safety
requirements. A ViSaL program starts with initialisation of an
input, in this case a StereoCamera (line 2), along with
an optional timing declaration (end of line 2). The timing
declaration creates an implicit rule that the generated code
expects input images with a certain frequency, in this case
10Hz. The StereoCamera is initialised with the size of the
images, again resulting in an implicit rule verifying that the
images must be of the correct size (if they are not an error

will be signalled at runtime, as with the timing rule). Next the
declaration of states (line 6) defines output categories for
the rules, the ordering indicates which outputs take precedence
over others (e.g., if there is just one “bad” result, everything
is “bad”). The declaration of output (line 8) lists which
rules are taken into account, and has a timing parameter which
imposes an implicit rule that the output has to be produced
within the required time. The input from the StereoCamera
is converted to monochrome images with the Bayer2Mono
function (line 11). Since the rules rely on a histogram this is
also initialised globally making it available for all the rules.
Next the individual rules are formulated. Here it is possible to
use statements, cases, loops, and call specific functions.

The rules implemented in Figure 2 are designed to demon-
strate that the language can perform the essential task of
detecting “bad” images. All of the rules use a threshold that
defines if the image violates the rules. The thresholds were ex-
perimentally determined and their effectiveness demonstrated
using a systematic evaluation procedure, where Precision-
Recall curves were used to ascertain the applicability for their
use in vision systems [58]. Since the thresholds would be
considered part of a safety specification of a robot, they are
integrated into the program in the case statements.

• The rule “Change Image” (CH) concerns the hazard of
a stuck image. CH evaluates if there are any changes
in the incoming image compared to the last image. The
CH rule randomly selects pixels from the image to do
the comparison. The code could evaluate all pixels in an
image, but for functional safety certification the hardware
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1 //initialising input, which requires size and rate of data.
2 input StereoCamera(height=752, width=480) camera @ >10Hz;
3

4 //Determining the priority of possible "states" for valid outputs for defined rules.
5 s t a t e s bad > warn > ok;
6

7 //out yields the output from the rules specified,
8 //which should comply with the specified frequency.
9 output out = CH, FB, BN, FR, CC @ <10ms;
10

11 //Code run every iteration
12 Image(height=752, width=480) monoLeft = Bayer2Mono (source = camera.left.image);
13 Histogram h = histogram ( source = monoLeft, bins = 16 );
14

15 r u l e CH { // CHanging image.
16 c o n s t int count = 5000;
17 var int sums = 0;
18 //The foreach loop extracts a random set of pixels from an image, and evaluates if the pixels are
19 //different compared to a previous existing image.
20 foreach Point pos from randomSet(min=0,image=monoLeft, max=monoLeft.pixels.length, n=count):
21 i f monoLeft.pixels.get(index=pos) != p r e v i ou s(monoLeft.pixels.get(index=pos)):
22 sums = sums+1;
23 case sums/count {
24 [0.9, 1] y i e l d ok;
25 [0.6, 0.9[ y i e l d warn;
26 e l s e y i e l d bad;
27 }
28 }
29 r u l e FB { // Filled Bins ratio of a histogram.
30 //The field "binSizes" contains a set of the sizes of all bins in the histogram. Set, then extracts
31 //a subset from "binSizes" and size evaluates the resulting number of bins.
32 case s i z e( s e t(uint x in h.binSizes: x>100)) / s i z e(h) {
33 [0.9, 1] y i e l d ok;
34 [0.7, 0.9[ y i e l d warn;
35 [0, 0.7[ y i e l d bad;
36 }
37 }
38 r u l e BN { // BiN distribution, maximum vs. minimum.
39 var uint max_min = maximum(h.binSizes) - minimum(h.binSizes);
40 case max_min / monoLeft.pixels.length {
41 [0, 0.2[ y i e l d ok;
42 [0.2, 0.4[ y i e l d warn;
43 [0.4, 1] y i e l d bad;
44 }
45 }
46 r u l e FR { // Energy Ratio when utilising a filter.
47 //The images is filtered using a high-pass butter-worth filter.
48 var Freq freq = freqFilter(image=monoLeft, filter=Butter);
49 //Compares the frequency before and after the applied filter to how much high-frequency content exists.
50 case freq.after / freq.before {
51 ]0.0001, 1] y i e l d ok;
52 ]0.00005, 0.0001] y i e l d warn;
53 [0, 0.00005] y i e l d bad;
54 }
55 }
56 r u l e CA { // Component Analysis .
57 //Computes the connected components for the light and dark spots in the image.
58 var CComp cc_bot = connectedComponents(pixels=monoLeft, exp=lessThan, range=20);
59 var CComp cc_top = connectedComponents(pixels=monoLeft, exp=moreThan, range=245);
60 //Finds the largest area and divides it with the total pixels.
61 case maximum(cc_bot.Largest, cc_top.Largest) / monoLeft.pixels.length {
62 ]0.02, 1] y i e l d bad;
63 ]0.01, 0.02] y i e l d warn;
64 [0, 0.01] y i e l d ok;
65 }
66 }

Fig. 2: Implementation of different image analysis rules for verifying the data integrity of images [58].
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Declaration ::= Input | Variable | Type | Function | Output | States
Input I ::= input NT ((Argument))? NI (@ >? C Unit )?;
Variable V ::= NT ((Argument))? NV = Exp‘i
External Type T ::= external type NT (( Argument ))? ({E})?
External Field E ::= field NE: NT

Function F ::= external function NF ( Parameter ): NT

Output O ::= output Nout = NR (, NR )? (@ >? C Unit )?;
States ::= states (NS >)+ NSi;
Rule R ::= rule NR { Statement }
Statement ::= Constant | LocalDecl | ForEach | Conditional | Case | Sequence
ForEach ::= foreach NT NV from E : Statement
Expression Exp ::= C | DotExp | previous(Exp) | Exp + Exp | ...
DotExp ::= NI∪L (. NE)∗

LocalDecl ::= (const | var) NT NcD = (Constant | ET | V);
Case ::= case Exp{ (Range yield NS ;)+ }
Range ::= ( ( | [ | ] ) C , C ( ) | [ | ] )
Conditional ::= if LogicalExp : Statement
LogicalExp ::= LogicalExp LogicalOp LogicalExp | Exp ComparisonOp Exp
ComparisonOp ::= == | >= | ...
LogicalOp ::= & | ...
Sequence ::= Statement∗

Unit ::= (Hz | ms)
Argument ::= NA = Exp
Parameter ::= NA = NT

Constant C ∈ R
Number N ∈ N

Fig. 3: The EBNF grammar of ViSaL. Where the terminals and the non−terminals of the languages can be seen. X
corresponds to comma separated list of X . NX indicates namespace of the corresponding construct.

used is often very limited in performance, which is why
we want the rules to be adapted for performance.

• The rule “Filled bins ratio of a histogram” (FB) concerns
the hazard of incorrect image exposure. The FB rule is
based on histogram analysis. The analysis concerns the
relation between the number of bins with pixels divided
by the total number of bins.

• The rule “Bin distribution, maximum vs. minimum bin”
(BN) concerns the hazard of a covered image (i.e., “lens
cap on”). This rule finds the bin with most pixels and
subtracts the pixel value from that of the bin with the
lowest amount of pixels.

• The rule “Energy ratio before and after high-pass filtering
(FR)” concerns the hazard of a blurred image. The rule
compares the energy of the image before and after using
a filter. This gives a notion about the high-frequency
content / sharpness of the image.

• The rule “Component analysis” (CA top & bottom)
concerns the hazard of an overexposed image. Connected
component analysis is used for finding over exposed (e.g.,
over exposure) and under exposed(e.g., covered image)

spots on the image. The rule is able to catch significant
light and dark spots on the image.

These rules exemplify the kinds of properties that can be
checked using ViSaL.

3.4 Syntax and Semantics
The EBNF of ViSaL is shown in Figure 3. The syntax largely
follows the metamodel (see Figure 1). The history level of
variables is not declared explicitly, but is determined by the
compiler by analysing the use of the “previous” keyword.
External types and functions declared in library, interface to
external C++ code. Ranges have a flexible syntax supporting
different mathematical notations for specifying intervals.

The semantics of ViSaL are represented by the algorithm
shown in Figure 4. A ViSaL program first initialize inputs
I, states OS and output O, where the input and output
have optional frequency parameter to impose run-time con-
straints. The inputs I are then analysed with respect to
correct data, in terms of size, as well as timing if frequency
has been specified. Then each rule R is iterated over, first
with regards to the rules specific code R.statements, and
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initialize inputs I @ freq F
initialize output O @ freq F

repeat
foreach input i in I

assert correctFormat(i.data)
assert (i.curTime - i.lastTime) < i.F
i.lastTime = i.curTime

foreach rule r in R:
evaluate r.statements
O[r] = r.caseResult

assert (O.curTime - O.lastTime) < O.F
O.lastTime = O.curTime

Fig. 4: The semantics of a ViSaL program.

then with respect to the case selection R.caseResult. If the
output of the R.caseResult does not fall within expected
thresholds, then an error case will be added instead. Finally
the optional frequency parameter for the output is tested. The
output is finally made available to the enclosing system. The
decision system can then decide to trust or not trust the data
flow, or in worst case demand a return to a safe state, e.g.,
stopping the system.

The time specification for inputs has an undefined semantics
if history is used on different inputs with different frequencies.
Therefore ViSaL does not allow to mix inputs with different
frequencies in a program if history is utilized in a rule, since
the input with lower frequency in a history rule would evaluate
the same image twice, which could introduce spurious errors.

3.5 Implementation
A single named entrypoint is generated from ViSaL, which is
a main function that first initialises all variables, their history,
and a timer (but only to the extent that these are used by the
DSL program). Then follows a main loop that continuously
checks time and image size constraints (if appropriate) and
then evaluates each rule in turn, while collecting information
about any errors triggered. In the end of the loop the variable
history is updated, as required for the DSL program. When
experimenting off-line the results of all the rules are stored in
a text file, ensuring new files for each run.

In previous work, the rules implemented by the ViSaL
program shown in Figure 2 were informally described and then
subsequently implemented manually in MATLAB for quanti-
tative evaluation [58]. We can now automatically generate the
C++ code with the same functionality, allowing the developer
to specify rules in high-level ViSaL specifications and then
generate C++ with the same functionality as the Matlab code.

ViSaL has been implemented using the xtext language
workbench [60]. The current implementation generates C++

code compatible with the C++11 standard using OpenCV
3.1.0 [61]. While this is appropriate for the hardware currently
targeted, a future implementation could also generate more
basic C code using a dedicated image processing library, which
would be more applicable for safety certification. Note that
not all of OpenCV is available to the developer, but rather
a subset of the library is utilized by ViSaL, expressed using
ViSaL external types. For safety ViSaL does not have a generic
interface for the OpenCV library, but the compiler uses a
modular design that makes it easy to support new datatypes
or operators based on OpenCV. Allowing unrestricted access
to OpenCV would make it very difficult to argue for safety
during certification.

4 EVALUATION

In this section we evaluate ViSaL with respect to performance
and qualitative issues. Section 4.1 compares manually written
code to generated code from ViSaL. In terms of performance
on an embedded hardware platform. Section 4.2 examines
claimed ViSaL benefits with respect to understandability.

Because ViSaL is aimed at safety-critical hardware it is
important to evaluate the code on embedded hardware. We
use an NVidia Jetson board [62], which is in a family with
the automotive grade hardware variant. While the TX1 board
is not safety compliant, the automotive variations of the board
denoted PX [63], are certifiable. The reason why the PX
board is able to be safety certified is that it incorporates
certified processing units for providing the guarantees needed.
We test on a TX1 development board, as it resembles the
performance available on a PX board and make benchmarks
more realistic, while we are aware that the PX board will have
less computational resources on the safety-critical unit.

4.1 ViSaL Evaluation

We made recordings with the NVidia Jetson TX1 board
connected to a CLAAS stereo camera [64]. The recordings
were made using a setup based on ROS [65]. The images are
recorded in scenarios that correspond to a selection of the
issues stated by Schmidt et al. with regards to automotive
camera mirror systems for cars [34], since similar hazards
often can be seen in general perception systems for robots.

The benchmark evaluation is only done on one CPU core
and not utilising the GPU. The benchmark process is as
follows:

• Clean restarted board, with ROS Indigo [66] installed
with Ubuntu 14.04 as OS.

• The benchmark is run for both code bases, where the
initial execution in both cases is discarded as warm-up.

• The benchmark consists of evaluating 99 images, a sam-
ple of which is presented in Figure 5, and is executed 50
times for each program, excluding warm-up.
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(a) Bad focus (b) Loss data (c) Exposure (d) Artefacts (e) Water (f) Artefacts

Fig. 5: Example images representative of issues found when using the experimental stereo camera setup.

• The output from both processes are compared with a
checksum to assert that we got the same results for all
the runs.

We then extract the mean and standard deviation of the
timings in both cases referring to Table 1. There is an indi-
cation that the generated code performs a bit worse than the
manual code. We investigate this indication by using paired-
samples t-test [67]. The paired-samples allows for testing with
small sample sizes compared to two-sample t-test, while also
reducing the signal-to-noise ratio that determines statistical
significance. We investigate H0 if the two sets have equal
means, comparing against H1,1 alternative hypothesis that the
population mean of ViSaL is larger than for the manual code.
We found as was evident from the Table 1, that the mean
runtime for ViSaL-generated code is higher than the manual
code (p-value = 8e−14). This could be a result of an extra for-
loop in the ViSaL code for the rule FR, however the variance
is still lower which is positive. The quantitative results thus
show that there is a limited cost to using the generated code.
This is significant because the generated code can be viewed
as being as good as manually written code, making it a feasible
replacement.

Looking at the percentage impact of the individual rules (see
Table 2). FB, creates the initial histogram of the images, which
is why it so much slower than BN. R consists of transforming
the image and filtering it, which is computationally heavy on a
CPU. The performance would probably increase if the GPU or
a dedicated processing unit for vision was utilized. A GPU is
however not present in the safety-critical processor, therefore a
platform-specific dedicated processing units for vision would
be the preferred method for improving the performance. We
expect that ViSaL would be suitable for generating code
for such a platform, significantly reducing development time
compared to C++.

4.2 Qualitative Evaluation
The results from the quantitative tests of the generated code
show performance being on-par with the manually written

TABLE 1: Overview of the mean, µ, and standard deviation,
σ, runtimes for the manual written and auto generated code.
The results in the table are in milliseconds.

Mean µ Standard deviation σ
Manual 348.3708 4.4377
ViSaL 349.5751 2.8127

TABLE 2: Overview of the rules percentage of an execution
of the results of ViSaL and manual in Table 1, the values are
rounded.

ViSaL Manual
FB 16.16 15.72
CA 0.81 0.88
CH 0.010 0.017
BN 0.002 0.001
FR 83.02 83.46

code. We now investigate the ViSaL qualitatively to understand
if there is any added benefit of using ViSaL. The ViSaL
program that is tested takes up 52 lines of code, excluding
a few generic library declarations not shown in Figure 2.
The resulting generated C++ code is 186 lines. The ViSaL
program was originally implemented in C++, with the same
functionality as provided by this ViSaL program, but required
147 lines of code to implement. Using ViSaL developers are
thus able to write the same functionality with fewer lines
of code compared to C++. We expect that the ViSaL code
is as easy to read as the equivalent C++ code, and that
a wider range of properties can be guaranteed statically for
ViSaL than for C++, which we have verified based on a
systematic study [68]. Based on our systematic study [68]
we extended the language with more rules, optimised range
notation, history, and most importantly the yield constructs,
shown in Figure 2. We found that the history construct and
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Fig. 6: A FTA of possible issues leading to the malfunction of colliding with an obstacle.

the case structure removed errors that were difficult to uncover
for participants. Lastly we found that parameter naming in
some instances could lower readability as the variable was
disregarded, prompting a change to this part of the language
as a result. The ViSaL program shown in Figure 2 uses this
new and improved syntax.

In order to demonstrate that the rules that can be expressed
by ViSaL program can perform many kinds of classifications
that would be useful for maintaining the safety of a mobile
robot, we have implemented an additional set of rules that are
significantly different from previously introduced rules:

1) 3D Object (3D): We insert a physical marker at a fixed
location in the scene, enabling the rule to verify that the
3D points from the stereo matching are usable. Because
it is known that a specific number of points should exist
at the physical marker location. Example hazard: Lost
stereo calibration.

2) Optical Flow (OF): Optical flow using Lucas
Kanade [69] uncovers if an image is changing. This
is done by evaluating how many areas of the image

are moving above a certain threshold. Example hazard:
Stuck image.

3) Entropy (EN): Shannon entropy is a measure of the
unpredictability of the image. This measure is added
as a function, but also possible to implement through
ViSaL expressions. The concept is to evaluate how much
information exists in the current image and compare it to
the previous image to understand if the information level
has changed drastically. The functionality was based on
input from a systematic study [68]. Example hazard:
Images which are noise.

The rules were tested and the generating code from ViSaL was
used with the dataset seen in this paper to verify that they are
able to detect issues.

The output of the different rules will enable the system to
analyse the trustworthiness of the sensor and act accordingly.
Similar concepts could be done for a lidar, as shown by an
initial concept presented in [70], this initial DSL however only
focused on cameras.
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5 DISCUSSION

The language that we propose reduces the lines of code to 52
lines, from 186 lines in manually written C++ code, for the
same functionality. This can increase the ease of development,
but the most important advantage is the easy compliance with
software guidelines. The generated code could be made to
comply with MISRA [57] rules to extend the trustworthiness
of the code generator, and thereby pave the way for compliance
with standards. MISRA is a guideline of which sub-parts of
the C or C++ language (depended on the MISRA standard)
should and should not be used, along with the requirement of
documentation, i.e., how the process has been followed, all of
which could be generated.

At present time the generated code is however not cer-
tifiable, further steps are needed, in particular a guarantee
that the generated code is the same as the ViSaL code. In
workshops with TÜV we learned this could be accomplished
by a separate compiler that can map C++ to ViSaL, where
the two compilers are not allowed to share code base [18].
Therefore the current DSL should be viewed as a concept to
achieve certification, however it is not limited to scenarios like
the camera mirror case, but can also be used for more advanced
perception pipelines. This can be done by defining and using
low-level rules according to system specific HRAs and FTAs,
and thereby serve to ensure that high-level and advanced
perception systems perform as expected and are trustworthy.
To show the possible explicit mapping we have made an FTA
of common issues in perception systems. The FTA is created
with respect to the malfunction of a field robot hitting an
obstacle, which is shown in Figure 6. The symbols in the FTA
follows an fault tree handbook for aerospace applications [71].
A specific symbol is the transfer symbol means that if there is
information prior to the symbol, then it describes the transfer
symbol, if there is no description it is a copy-paste of an earlier
description. The FTA is read from the bottom up, meaning that
the top event “collision with an obstacle” is a result of faults
propagating up through the tree.

An FTA creates a visual record of a system, that illustrates
the relations between issues that can lead to a specific failure.
The FTA in Figure 6 is an extract from documentation made
for a field robot. The extract covers a specific failure: colliding
with an obstacle, which is a result from a safety goal. The FTA
omits information that is not relevant for ViSaL, specifically
issues with communication, hardware (e.g., memory error/-
corruption), and mechanical issues. The bottom-right corner of
the FTA explicitly states low-level issues for images; exposure,
frozen image, and misalignment. These issues are with respect
to the FTA, which in worst case can lead to the overall
catastrophic failure of colliding with and obstacle. The low-
level issues reference are root causes in the FTA, and need to
be addressed for certification. ViSaL enables the developer to
create explicit rules that addresses these specific issues.

Comparing the FTA in Figure 6 with the ViSaL example

code in Figure 2, certain issues can be connected to the
implemented rules, marked in a different colour. The frozen
image failure, can be directly mapped to rule CH (line 14-
27). The other rules implemented in the example addresses
over and under exposure, which is also an issue in the FTA. In
addition the timings specified on input and output (line 2 and 6
respectively) in ViSaL, can detect issues with communication
between sensor and processing unit, since it expects a message
with a certain frequency. Thereby ensuring if there is “no” or
a “late response” from the sensor, that the decision system
receives the information from the ViSaL process, and allows
the decision system to act accordingly. The reaction could be
to rely on other sensors or reach a safe state, e.g., stopping the
system. The ability to easily match implemented functionality
and requirements, be that safety-critical or not, is an important
aspect of ViSaL. This property has been investigated in a
systematic study [68], where we found that ViSaL performed
better than C++for textual matchings.

6 FUTURE WORK
Future work concerns the experimental validation of ViSaL by
using an automatically generated safety monitor with a vision
pipeline installed on a tractor or field robot working in a real-
life scenario. We will also experimentally verify if combination
of rules can increase detection of errors in ViSaL and allow
for it to be expressed. Future work for the language includes
further static guarantees, e.g., regarding data type inference or
worst-case execution time. could be to infer types and verify
code using inference. ViSaL is used to express simple rules
where thresholds for the vision must be specified. The Matlab
code specific for the rules could also be generated to improve
traceability.

Currently we utilise OpenCV as an underlying framework,
but other frameworks could be supported in the future by using
different target platforms for compilation. We consider NVidia
Drive PX and MobileEye SoCs as interesting target platforms,
but the question of which vision framework to target on these
platforms is future work.

ViSaL could therefore be used to guarantee sensor inputs
and be a facilitator for safe navigation. To enable safe naviga-
tion additional algorithms have to be included, e.g., utilising
a perimeter calculation based on Täubig et al.’s concept [72].
The speed and detection zones could further be extended by
the notion of passive motion safety [73] in connection with
guaranteeing a safety zone [72]. Introducing these capabilities
when verifying a perception systems for navigation could
improve certification. An extension to ViSaL to test hardware
issues, e.g., failure in calculations, could be to use stored
images and their results, to see if the output matches earlier
recorded results, to verify the process during operation. Further
saving the known image different places in memory could
also allow for test of the memory system, thus improving the
certification flow, because more aspects of issues in the FTA
is covered.
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The concepts could be transferred to other sensors or
perception pipelines. We have conducted experiments with
lidars [70], where the number of working laser channels was
assessed by using a fixed landmark, similar to the idea of the
3D rule. Furthermore, many perception pipelines are reliant
on neural networks where semantic rules could make sense,
i.e., sky should be above the ground or a certain percentage of
ground should be visible in the image. Both cameras and lidars
have however been seen to be susceptible to attacks [74]. The
Proposed counter measures can currently not be implemented
by ViSaL, the reason is two-fold, first that the language does
not support features such as randomising ping waveform; and
some sensors, e.g., Velodyne and IBEO, emit pre-processed
signals and augmenting the emitted signals is not possible at
present time. Nevertheless this will not thwart all possible
spoofing attempts [74]. We believe however that the issue
of attacking cameras with over-exposed light sources, which
cameras has been shown to be vulnerable to [75], [76], will
be caught by ViSaL, e.g., using rules such as 3D (known
object) or CA (connected component). The issue of attacks
is not limited to perception sensors; gyroscopes have also
been proven to be susceptible [77] as have encoders [78]
Investigations into perception sensors safety and security is
rare [74], and therefore more research is needed within safety,
security and the cross-domain of the two. It is interesting to
investigate how small an area should be detected, following
that more data is needed for testing the different use-cases,
i.e., normal-, faulty- and under-attack operation.

7 CONCLUSION
The use of vision-based sensing is critical for many uses of
mobile robots in dynamic environments, and yet the issue of
systematically designing, implementing and certifying safety
of vision systems remains largely unaddressed. Based on the
concept of simple and explicit rules for detecting failures of a
computer vision pipeline, we have designed the ViSaL DSL for
enabling concise and efficient implementations of such rules,
as presented in this paper. The use of a DSL enables automatic
code generation and is critical for automating other aspects of
the process, such as determining the required error/warning
thresholds and automatically integrating with other model-
driven approaches to programming of vision pipelines.
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communication, 2016. 2.1, 5

[19] TC 184, “Robots and robotic devices - Safety requirements for
personal care robots,” International Organization for Standardization,
International Standard ISO 13482:2014, 2014. [Online]. Available:
https://www.iso.org/standard/53820.html 2.1, 2.2.1

[20] S. Dogramadzi, M. E. Giannaccini, C. Harper, M. Sobhani, R. Woodman,
and J. Choung, “Environmental hazard analysis - a variant of preliminary
hazard analysis for autonomous mobile robots,” Journal of Intelligent &

http://www.europarl.europa.eu/document/activities/cont/201303/20130321ATT63633/20130321ATT63633EN.pdf
http://www.europarl.europa.eu/document/activities/cont/201303/20130321ATT63633/20130321ATT63633EN.pdf
http://dl.acm.org/citation.cfm?id=2972500
http://www.irisa.fr/lagadic/pdf/2015_ijrr_editorial.pdf
http://www.irisa.fr/lagadic/pdf/2015_ijrr_editorial.pdf
http://ieeexplore.ieee.org/iel5/9126/28923/01302508.pdf
http://rrlab.cs.uni-kl.de/fileadmin/Literatur/Reichardt13.pdf
http://rrlab.cs.uni-kl.de/fileadmin/Literatur/Reichardt13.pdf
http://ieeexplore.ieee.org/document/1597083/
http://dl.acm.org/citation.cfm?id=2047875
https://joser.unibg.it/
http://ieeexplore.ieee.org/document/6343888/
http://ieeexplore.ieee.org/document/6343888/
http://www.iso.org/iso/home/standards.htm
http://www.iso.org/iso/home/standards.htm
http://link.springer.com/article/10.1007/s11633-008-0174-0
http://link.springer.com/article/10.1007/s11633-008-0174-0
http://dl.acm.org/citation.cfm?id=2702098
http://link.springer.com/chapter/10.1007/978-3-319-11900-7_18
http://link.springer.com/chapter/10.1007/978-3-319-11900-7_18
http://ieeexplore.ieee.org/document/7926520/
http://ieeexplore.ieee.org/document/7926520/
https://www.iso.org/obp/ui/#iso:std:iso-iec:guide:51:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:guide:51:ed-3:v1:en
https://www.iso.org/standard/53820.html


30 Journal of Software Engineering for Robotics 8(1), December 2017

Robotic Systems, vol. 76, no. 1, pp. 73–117, 2014. [Online]. Available:
http://link.springer.com/article/10.1007/s10846-013-0020-7 2.1

[21] TC 23, “Tractors and machinery for agriculture and forestry –
safety-related parts of control systems,” International Organization
for Standardization, International Standard ISO 25119-2010, 2010.
[Online]. Available: https://www.iso.org/standard/45050.html 2.1, 2.2.1

[22] TC 22, “Road Vehicles Functional Safety,” International Organization
for Standardization, International Standard ISO 26262:2011, 2011.
[Online]. Available: http://www.iso.org/iso/catalogue detail?csnumber=
43464 2.1
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